A neuro-fuzzy approach for modelling electricity demand in Victoria

نویسندگان

  • Ajith Abraham
  • Baikunth Nath
چکیده

Neuro-fuzzy systems have attracted growing interest of researchers in various scientific and engineering areas due to the increasing need of intelligent systems. This paper evaluates the use of two popular soft computing techniques and conventional statistical approach based on Box–Jenkins autoregressive integrated moving average (ARIMA) model to predict electricity demand in the State of Victoria, Australia. The soft computing methods considered are an evolving fuzzy neural network (EFuNN) and an artificial neural network (ANN) trained using scaled conjugate gradient algorithm (CGA) and backpropagation (BP) algorithm. The forecast accuracy is compared with the forecasts used by Victorian Power Exchange (VPX) and the actual energy demand. To evaluate, we considered load demand patterns for 10 consecutive months taken every 30 min for training the different prediction models. Test results show that the neuro-fuzzy system performed better than neural networks, ARIMA model and the VPX forecasts. © 2001 Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Linear Genetic Programming Approach for Modeling Electricity Demand Prediction in Victoria

Genetic programming (GP), a relatively young and growing branch of evolutionary computation is gradually proving to be a promising method of modelling complex prediction and classification problems. This paper evaluates the suitability of a linear genetic programming (LGP) technique to predict electricity demand in the State of Victoria, Australia, while comparing its performance with two other...

متن کامل

Artificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river

ABSTRACT: In this study, adaptive neuro-fuzzy inference system, and feed forward neural network as two artificial intelligence-based models along with conventional multiple linear regression model were used to predict the multi-station modelling of dissolve oxygen concentration at the downstream of Mathura City in India. The data used are dissolved oxygen, pH, biological oxygen demand and water...

متن کامل

Adaptive Online Traffic Flow Prediction Using Aggregated Neuro Fuzzy Approach

Short term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems. Although various methodologies have been applied to forecast traffic parameters, several researchers have showed that compared with the individual methods, hybrid methods provide more accurate results . These results made the hybrid tools and approaches a more common method for ...

متن کامل

Developing a fuzzy-neuro model for travel demand modelling

Various methods are currently used in travel demand modelling (TDM), for example, the Four-Step model, which is widely used and is perhaps the most famous one, Discrete Choice Models, Fuzzy Set Theory and the Neural Network Approach. The emergence of these different methods is due to, for instance, different areas having different problems. Hence, a method successfully applied in one area could...

متن کامل

Electricity Consumption in the Industrial Sector of Jordan: Application of Multivariate Linear Regression and Adaptive Neuro-fuzzy Techniques

In this study two techniques, for modeling electricity consumption of the Jordanian industrial sector, are presented: (i) multivariate linear regression and (ii) neuro-fuzzy models. Electricity consumption is modeled as function of different variables such as number of establishments, number of employees, electricity tariff, prevailing fuel prices, production outputs, capacity utilizations, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2001